Y HELMHOLTZ CENTER FOR
¢/ilV* | INFORMATION SECURITY

Fuzzing: A Tale of € = Cultures

Fuzzing Workshop @ NDSS'22 - April 24, 2022

Fuzzing

Random Testing at the System Level

[; x1-GPZ+wcckc]; ,N9J+?#676\e?]91lu2 %'4GX"OVUB[E/r
~TApubb8<{%siq8Zh.6{V,hr?; {Ti.r3PIXMMMv6{xS™+'Hq!AXxB"YXRSQ@!
Kd6 ; wtAMefFWM (" |J <1~0}z3K(CCzRH JIIvHz> *.\>JrlU32~eGP?
LR=bF3+;y$310dQ<B89!5"W2fK*VE7v{')KC-1i,c{<[~m!]o;{. " '}Gj\ (X}
EtYetrpbY@aGZ1{P!AZU7x#4(Rtn!q4nCwqol”y6}0 |

Ko=*JK~; zMKV=9Nai:wxu{J&UV#HaU) *BiC<), +t*gka<W=Z.

%I SWGHZpI30D<Pg>&]1BS6R&] ?#tP71aV}-} \?[[Z"LBMPG-

FKj '\xwuZ1l=Q ~ 5, NQ@[!CuRzJ2D|vBy!”~zkhdf3C5PAKR?V hn|
3="12Q0x]D%$qs40 1@fevnG'2\11Vf3piU37@55ap\zIyl"'f,

$ee,J4Gw: cgNKLie3nx9(efSlgb#[K"@WjhZ}r[Scun&sBCS,T[/
vY'pduwgzDlVNy7' rnzxNwI) (ynBa>%|b ; 9fG]P_0hdG~$@6
3]KAeENQ71U)3Pn,0)G/6N-wyz]/MTd#A; r

Bart Miller

Coined “Fuzzing”

An Empirical Study of the Reliability
of
UNIX Utilities

Barton P. Miller

bartecs.wisc.edu

Lars Fredriksen
L .Fredrikseneatt.com

Bryan So

so@cs.wisc.edu

(1989)

Test Generation

Test Routines Based on Symbolie Logical Statements™ SELECT-~A FORMAL SYSTEM FOR (1975
"ESTING AND DEBUGGING PROGRAMS
Ricaarp D. Euprep BY SYMBOLIC EXECUTION¥
Datamatic, Newton Highlands, Meassachusetls (1958) Robert S. Boyer

Bernard Elspas
Karl N. Levitt
Computer Science Group
Stanford Research Institute
Menlo Park, California 94025

Generating Test Programs from Syntax

By
W H B kh dt C d N J— IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 4, JULY 1984
. H. Burkhardt, Camden, N.. |
With 18 Figures An Evaluation of Random Testing

(Recewved October 27, 1966) JOE W. DURAN, MEMBER, 1EEE, AND SIMEON C. NTAFOS, MEMBER, IEEE

Test Generation Fuzzing

Test Routines Based on Symbolic Logical Statements®

(1958) An Empirical Study of the Reliability

Ricuaarp D. FEuprep

Datamatic, Newton Highlands, Massachuselis

(fenerating Test Programs from Syntax of

By UNIX Utilities

W. H. Burkbardt, Camden, N.J.
Barton P. Miller

With 18 Figures
bartecs.wisc.edu

(Recewved October 27, 1966)
Lars Fredriksen
L .Fredrikseneatt.com

SELECT~~A FORMAL SYSTEM FOR
~ESTING AND DEBUGGING PROGRaMs (1975)
BY SYMBOLIC EXECUTION¥

Bryan So

so@cs.wisc.edu

What’s new?

Robert S, Boyer
Bernard Elspas
Karl N. Levitt
Computer Science Group
Stanford Research Institute

Menlo Park, California 94025
(1989)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-10, NO. 4, JULY 1984

An Evaluation of Random Testing

JOE W. DURAN, MEMBER, 1EEE, AND SIMEON C. NTAFOS, MEMBER, IEEE

Test Generation Fuzzing

test own programs test other programs

Software
Engineering

)

|—

O
3 =4

test own programs test other programs

(“Test generation”) (“Fuzzing”)

Software
Engineering

)

|—

O
3 =4

test own programs test other programs

“Test generation” = “Fuzzing”

Software
Engineering

) T ¢

test own programs

You want to find bugs

You are willing to invest lots of time
You have the source code

You have a spec and/or test cases
You have an idea where the bugs are
You have an idea of what a bug Is

You need guidance for testing decisions

test other programs

You want to find bugs

You are not willing to invest lots of time
You do not have the source code

You may have some inputs or traces
You have no idea where the bugs are
You want crashes (= possible exploits)

You want full automation

Two Cultures — Assumptions

* You want to find bugs

* You are willing to invest lots of time

* You have the source code

* You have a spec and/or test cases

* You have an idea where the bugs are
* You have an idea what a bug is

* You need guidance for testing decisions

L(' ’//

You want to find bugs

You are not willing to invest lots of time
You do not have the source code

You may have some inputs or traces
You have no idea where the bugs are
You want crashes (= possible exploits)

You want full automation

Two Cultures — Reviewing

* Focus is on future e Focus is on here and now

* Want guidance for testing decisions « Expect vulnerabilities or even exploits

* Focus on conceptual improvements * Want hard-to-test systems as benchmarks
 Want explanations on how numbers come to be * Want no assumptions; expect full automation
 Want detalls on decisions and rationales Expect scalability and versatility

 Want to know when and why things will not work Expect you are better than others

* Expect open science principles * Expect tools + data only after acceptance

Two Cultures: Software Engineering vs Security

* "l have a great fuzzing - Want no assumptions
technique that needs nothing
except a full formal * Expect full automation

specification of ...”

Two Cultures: Software Engineering vs Security

* “| have a great Python fuzzer . Expect vulnerabilities
that improves code coverage or zven exploits
by 50%"” P

 \Want hard-to-test systems
as benchmarks

Two Cultures: Software Engineering vs Security

(7

»~

s

» Focus on conceptual improvements * “l have applied fuzzing on <system>
and found 3 new CVES”

 Want explanations on how numbers
come to be

 Want to know when and why things
will not work

Two Cultures: Software Engineering vs Security

* Want details on decisions and rationales * “After hyperparameter tuning, our
| | method performs up to 10% better on
 Want to know when and why things will not work the benchmark than the competition”

* Expect open science principles

test own programs test other programs

test any program

test any program

test any program

test any program

You want full automation - but also control:

 |f you have inputs or traces, use them

* |f you have the source code, use it
* |f you have a spec and/or test cases, use them
* |f you have an idea where the bugs are, use it

* |f you have an idea of what a bug is, use it

Taming Fuzzers

You want full automation - but also control:
 |f you have inputs or traces, use them

* |f you have the source code, use it

* |f you have a spec and/or test cases, use them

* |f you have an idea where the bugs are, use it

* |f you have an idea of what a bug is, use it

<" |CISPA

\/ Q HELMHOLTZ CENTER FOR
AT\ INFORMATION SECURITY

Specifying Inputs

Context-Free Grammars

(xmi-tree) ;.= (xml-openclose-tag)

| <xml-open-tag) <inner-xml-tree) (xml-close-tag)
{inner-xml-tree) ::= {text) | (xml-tree)

| (inner-xml-tree) <inner-xml-tree)
(xml-open-tag) ::= ‘<’(d)*>" | ‘<id)‘ . <xml-attribute)‘>’
(xml-close-tag) ::= ‘</’<id)*>’
(xml-openclose-tag) 1= ‘<’dd)!/>’ | ‘<<id)' . (xml-attribute)‘/>’
xml-attribute) .= {d)'=""(text)"™

| (xml-attribute) ‘)’ (xml-attribute)

<0 cfg="ej45"><Qr hh="21"></P>...

Specifying Inputs

Context-Free Grammars

(xmi-tree) ;.= (xml-openclose-tag)

| <xml-open-tag) <inner-xml-tree) (xml-close-tag)
{inner-xml-tree) ::= {text) | (xml-tree)

| (inner-xml-tree) <inner-xml-tree)
(xml-open-tag) ::= ‘<’(d)*>" | ‘<id)‘ . <xml-attribute)‘>’
(xml-close-tag) ::= ‘</’<id)*>’
(xml-openclose-tag) 1= ‘<’dd)!/>’ | ‘<<id)' . (xml-attribute)‘/>’
(xml-attribute) ::= <d) ‘=" {text) "

| (xml-attribute) ‘)’ (xml-attribute)

(text) ::= *"; DROP TABLE Students; --’ | (other-text)

Specifying Inputs

Context-Free Grammars

(xmi-tree) ;.= (xml-openclose-tag)
| <xml-open-tag) <inner-xml-tree) (xml-close-tag)
{inner-xml-tree) ::= {text) | (xml-tree)
| (inner-xml-tree) <inner-xml-tree)
(xml-open-tag) ::= ‘<’(d)*>" | ‘<id)‘ . <xml-attribute)‘>’
(xml-close-tag) ::= ‘</’<id)*>’
(xml-openclose-tag) 1= ‘<’dd)!/>’ | ‘<<id)' . (xml-attribute)‘/>’
xml-attribute) .= {d)'=""(text)"™
| (xml-attribute) ‘)’ (xml-attribute)

THIS IS NOT XML

Specifying Inputs
The ISLa Specification Language

(xml-tree) ::= (xml-openclose-tag)

| <xml-open-tag) <inner-xml-tree) (xml-close-tag)
{inner-xml-tree) ::= (text) | (xml-tree)

| (inner-xml-tree) <inner-xml-tree)
(xml-open-tag) ::= ‘<’ddy>’ | ‘< (id)' L’ (xml-attribute) ‘>’
(Xml-close-tag) ::= ‘</<id)*>’
(xml-openclose-tag) ::= ‘<(id)*/>" | ‘<’ d)‘ L’ (xml-attribute) />’
xml-attribute) ::= id) =""(text)""’

| (xml-attribute) ‘.’ (xml-attribute)

forall <xml-tree> tree="<{<id) opid}[{xml-attribute)]>
{inner-xml-tree)
</A«id) clid}>" in start:

(= opid clid)

THIS IS XML (<O cfg="ej45"><Qr hh="21"></Qr>...

Input Constraints
The ISLa Specification Language

forall <xml-tree> tree="<{<id) opid}{{xml-attribute)|>
{(inner-xml-tree)
<A«d) clid}>" Iin start:

(= opid clid)

THIS 1S XML

Satisfying Constraints
The ISLa Fuzzer + Checker

* |SLa takes a (context-free) grammar
and (SMT) constraints

* Produces inputs that satisfy grammar +

Grammar Constraints .
constraints
ISLa * Can check inputs whether they fulfill
the constraints
Valid Inputs * Full declarative specification of inputs

» Can be paired with any fuzzing strategy

« XML: 18 LOC, TAR: 61 LOC

Learning Input Languages

The ISLearn Invariant Miner

* |SLearn takes a (mined”?) grammar

Grammar Inputs Batterns and a set of inputs

 From a set of patterns, determines

ISLearn constraints that hold for all inputs

 Validates constraint candidates
using extra (generated) tests

» Patterns include length constraints,
checksums, def/use, and more

 Learned Racket, Dot, ICMP with
/8-97% accuracy

DEMO

Taming Fuzzers

You want full automation - but also control:

 |If you have inputs or traces, use them
CAN LEARN CONSTRAINTS FROM INPVTS

* |f you have the source code, use it
CAN LEARN GRAMMAR FROM CODE

* |f you have a spec and/or test cases, use them
CAN WRITE AND/OR EDIT LANGVAGE SPECS

* |f you have an idea where the bugs are, use it
CAN DIRECT GENERATION TOWARDS BVGS

* |f you have an idea of what a bug is, use it
CAN APPLY CHECKERS TO OVTPVTS, TOO

Learn M

Dominic Steinhofel

ore about ISLa

Input Invariants

Dominic Steinhofel
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
dominic.steinhoefel@cispa.de

ABSTRACT

Grammar-based fuzzers are highly efficient in producing syntac-
tically valid system inputs. However, as context-free grammars
cannot capture semantic input features, generated inputs will often
be rejected as semantically invalid by a target program. We pro-
pose ISLa, a declarative specification language for context-sensitive
properties of structured system inputs based on context-free gram-
mars. With ISLa, it is possible to specify input constraints like “a
variable has to be defined before it is used,” “the length of the ‘file
name’ block in a TAR file has to equal 100 bytes,” or “the number
of columns in all CSV rows must be identical”

ISLa constraints can be used for parsing or validation (“Does an
input meet the expected constraint?”) as well as for fuzzing, since
we provide both an evaluation and input generation component. ISLa
embeds SMT formulas as an island language, leveraging the power
of modern solvers like Z3 to solve atomic semantic constraints.
On top, it adds universal and existential quantifiers over the struc-
ture of derivation trees from a grammar, and structural (“X occurs
before Y”) and semantic (“X is the checksum of Y”) predicates.

ISLa constraints can be specified manually, but also mined from
existing input samples. For this, our ISLearn prototype uses a cat-
alog of common patterns (such as the ones above), instantiates
these over input elements, and retains those candidates that hold
for the inputs observed and whose instantiations are fully accepted
by input-processing programs. The resulting constraints can then
again be used for fuzzing and parsing.

https://publications.cispa.saarland/3596/1/main.pdf

Andreas Zeller
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
zeller@cispa.de

1 INTRODUCTION

Automated software testing with random inputs (fuzzing) [19] is
an effective technique for finding bugs in programs. Pure random
inputs can quickly discover errors in input processing. Yet, if a
program expects complex structured inputs (e.g., C programs, JSON
expressions, or binary formats), the chances of randomly produc-
ing valid inputs that are accepted by the parser and reach deeper
functionality are low.

Language-based fuzzers [8, 12, 13] overcome this limitation by
generating inputs from a specification of a program’s expected
input language, frequently expressed as a Context-Free Grammar
(CFG). This considerably increases the chance of producing an input
passing the program’s parsing stage and reaching its core logic. Yet,
while being great for parsing, CFGs are often too coarse for producing
inputs. Consider, e.g., the language of XML documents (without
document type). This language is not context free.! Still, it can be
approximated by a CF(
When we used a covet
from this grammar, ex:
< B7</0>) contained
language-based fuzzers
for parsing which the:
specification for produ
as hundreds of languay

To allow for precise
with more information [

T

Software
Engineering

Security

test own programs test other programs

("Test generation") ("Fuzzing")

Input Invariants

ISLa input specification language + ISLearn invariant miner

» ISLa takes a (context-free) grammar
and (SMT) constraints

Grammar Inputs Patterns
K i / * |ISLa produces and checks inputs that
ISLearn satisfy grammar + constraints
v * ISLearn learns
Constraints constraints from E E
v given inputs T
ISLa :
* Full declarative
v specification .
Valid Inputs
» Validated through E L

generated tests

Two Cultures - Reviewing

* Focus is on future

Want guidance for testing decisions

Focus on conceptual improvements

* \Want explanations on how numbers come to be
* \Want details on decisions and rationales
 Want to know when and why things will not work

* Expect open science principles

Taming Fuzzers

One
Fuzzer

* Focus is on here and now

* Expect vulnerabilities or even exploits
 Want hard-to-test systems as benchmarks

* Want no assumptions; expect full automation
* Expect scalability and versatility

* Expect you are better than others

* Expect tools + data only after acceptance

(7~

”~
—
“

You want full automation - but also controil:

 If you have inputs or traces, use them
CAN LEARN CONSTRAINTS FROM (NPVTS

If you have the source code, use it
CAN LEARN GRAMMAR FROM CODE

If you have a spec and/or test cases, use them
CAN WRITE AND/OR EDIT LANGUAGE SPECS

If you have an idea where the bugs are, use it
CAN DIRECT GENERATION TOWARDS BUGS

If you have an idea of what a bug is, use it

CAN APPLY CHECKERS TS OVTPVTS, Too

Software Security Two Cultures - Reviewing
Engineering '

A\ p (7~ .
ﬁ - * Focus is on future * Focus is on here and now
né s = * Want guidance for testing decisions « Expect vulnerabilities or even exploits
-) e Want hard-to-test systems as benchmarks
s ICISPA
test own programs to be * Want no assumptions; expect full automation

HELMHOLTZ CENTER FOR . .
A\ INFORMATION SECURITY * Expect scalability and versatility

t work * Expect you are better than others

("Test generation")

* Expect tools + data only after acceptance

«
/'('7Jv \
y NN
! = ! REA

We're hiring!
Input Invariants

ISLa input specification language + I€ | - ' Y Jgl *'
IS ' R 4 R nt full automation - but also control:
Grammar Inputs Patterns an
K ¢ / e IS have inputs or traces, use them
ISLearn sail CAN LEARN CONSTRAINTS FROM (NPVTS
 |If you have the source code, use it

& ISLearn learns One CAN LEARN GRAMMAR FROM CODE

ConSirai"tS c_onstr_aint? from Fuzzer « If you have a spec and/or test cases, use them
given Inputs CAN WRITE AND/OR EDIT LANGVAGE SPECS
ISLa

If you have an idea where the bugs are, use it
CAN DIRECT GENERATION TOWARDS BUGS

If you have an idea of what a bug is, use it
CAN APPLY CHECKERS TO OVTPVTS, TOO

 Full declarative
v specification
Valid Inputs

« Validated through
generated tests

