
🦸🦹

Fuzzing Workshop @ NDSS'22 • April 24, 2022

Fuzzing: A Tale of Cultures
Andreas Zeller

Fuzzing
Random Testing at the System Level

[;x1-GPZ+wcckc];,N9J+?#6^6\e?]9lu2_%'4GX"0VUB[E/r
~fApu6b8<{%siq8Zh.6{V,hr?;{Ti.r3PIxMMMv6{xS^+'Hq!AxB"YXRS@!
Kd6;wtAMefFWM(`|J_<1~o}z3K(CCzRH JIIvHz>_*.\>JrlU32~eGP?
lR=bF3+;y$3lodQ<B89!5"W2fK*vE7v{')KC-i,c{<[~m!]o;{.'}Gj\(X}
EtYetrpbY@aGZ1{P!AZU7x#4(Rtn!q4nCwqol^y6}0|
Ko=*JK~;zMKV=9Nai:wxu{J&UV#HaU)*BiC<),`+t*gka<W=Z.
%T5WGHZpI30D<Pq>&]BS6R&j?#tP7iaV}-}`\?[_[Z^LBMPG-
FKj'\xwuZ1=Q`^`5,NQ@[!CuRzJ2D|vBy!^zkhdf3C5PAkR?V hn|
3='i2Qx]D$qs4O`1@fevnG'2\11Vf3piU37@55ap\zIyl"'f,
$ee,J4Gw:cgNKLie3nx9(`efSlg6#[K"@WjhZ}r[Scun&sBCS,T[/
vY'pduwgzDlVNy7'rnzxNwI)(ynBa>%|b`;`9fG]P_0hdG~$@6
3]KAeEnQ7lU)3Pn,0)G/6N-wyzj/MTd#A;r

Bart Miller
Coined “Fuzzing”

(1989)

(1975)

Test Generation

(1958)

(1975)

Fuzzing

(1989)

What’s new?

Test Generation
(1958)

FuzzingTest Generation

test own programs

🦸
test other programs

🦹

SecuritySoftware 
Engineering

test own programs test other programs

🦸 🦹
“Test generation” “Fuzzing”(())

SecuritySoftware 
Engineering

test own programs test other programs

🦸 🦹
“Test generation” “Fuzzing”=

• You want to find bugs

• You are willing to invest lots of time

• You have the source code

• You have a spec and/or test cases

• You have an idea where the bugs are

• You have an idea of what a bug is

• You need guidance for testing decisions

Software 
Engineering

test own programs

🦸

• You want to find bugs

• You are not willing to invest lots of time

• You do not have the source code

• You may have some inputs or traces

• You have no idea where the bugs are

• You want crashes (= possible exploits)

• You want full automation

Security

test other programs

🦹

• You want to find bugs

• You are not willing to invest lots of time

• You do not have the source code

• You may have some inputs or traces

• You have no idea where the bugs are

• You want crashes (= possible exploits)

• You want full automation

Two Cultures – Assumptions

• You want to find bugs

• You are willing to invest lots of time

• You have the source code

• You have a spec and/or test cases

• You have an idea where the bugs are

• You have an idea what a bug is

• You need guidance for testing decisions

🦸 🦹

Two Cultures – Reviewing

🦸🦸🦸 🦹🦹🦹
• Focus is on future

• Want guidance for testing decisions

• Focus on conceptual improvements

• Want explanations on how numbers come to be

• Want details on decisions and rationales

• Want to know when and why things will not work

• Expect open science principles

• Focus is on here and now

• Expect vulnerabilities or even exploits

• Want hard-to-test systems as benchmarks

• Want no assumptions; expect full automation

• Expect scalability and versatility

• Expect you are better than others

• Expect tools + data only after acceptance

🦹🦹🦹

Two Cultures: Software Engineering vs Security

• “I have a great fuzzing
technique that needs nothing
except a full formal
specification of …”

• Want no assumptions

• Expect full automation

🦸

🦹🦹🦹
• Expect vulnerabilities 

or even exploits

• Want hard-to-test systems 
as benchmarks

🦸
• “I have a great Python fuzzer

that improves code coverage
by 50%”

Two Cultures: Software Engineering vs Security

🦸🦸🦸 🦹
• “I have applied fuzzing on <system>

and found 3 new CVEs”
• Focus on conceptual improvements

• Want explanations on how numbers
come to be

• Want to know when and why things
will not work

Two Cultures: Software Engineering vs Security

🦸🦸🦸
• “After hyperparameter tuning, our

method performs up to 10% better on
the benchmark than the competition”

🦹
• Want details on decisions and rationales

• Want to know when and why things will not work

• Expect open science principles

Two Cultures: Software Engineering vs Security

test own programs test other programs

🦸🦸🦸 🦹🦹🦹

test any program

🦸🦹🦸🦹🦸🦹

🦸🦹🦸🦹🦸🦹
test any program

🧑 👩🧒 👨🧔 👩🎓

test any program

🦸🦹🦸🦹🦸🦹

test any program

You want full automation – but also control:

• If you have inputs or traces, use them

• If you have the source code, use it

• If you have a spec and/or test cases, use them

• If you have an idea where the bugs are, use it

• If you have an idea of what a bug is, use it

🦸🦹

Taming Fuzzers

You want full automation – but also control:

• If you have inputs or traces, use them

• If you have the source code, use it

• If you have a spec and/or test cases, use them

• If you have an idea where the bugs are, use it

• If you have an idea of what a bug is, use it

{One
Fuzzer

Sneak Peek

🦸🦹🦸🦹🦸🦹

Specifying Inputs
Context-Free Grammars

⟨xml-tree⟩ ::= ⟨xml-openclose-tag⟩ 
 | ⟨xml-open-tag⟩ ⟨inner-xml-tree⟩ ⟨xml-close-tag⟩

⟨inner-xml-tree⟩ ::= ⟨text⟩ | ⟨xml-tree⟩

 | ⟨inner-xml-tree⟩ ⟨inner-xml-tree⟩

⟨xml-open-tag⟩ ::= ‘<’⟨id⟩‘>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘>’  
⟨xml-close-tag⟩ ::= ‘</’⟨id⟩‘>’ 
⟨xml-openclose-tag⟩ ::= ‘<’⟨id⟩‘/>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘/>’ 
⟨xml-attribute⟩ ::= ⟨id⟩‘="’⟨text⟩‘"’

 | ⟨xml-attribute⟩ ‘␣’ ⟨xml-attribute⟩

🦸

<O cfg="ej45"><Qr hh="21"></P>…

Specifying Inputs
Context-Free Grammars

⟨xml-tree⟩ ::= ⟨xml-openclose-tag⟩ 
 | ⟨xml-open-tag⟩ ⟨inner-xml-tree⟩ ⟨xml-close-tag⟩

⟨inner-xml-tree⟩ ::= ⟨text⟩ | ⟨xml-tree⟩

 | ⟨inner-xml-tree⟩ ⟨inner-xml-tree⟩

⟨xml-open-tag⟩ ::= ‘<’⟨id⟩‘>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘>’  
⟨xml-close-tag⟩ ::= ‘</’⟨id⟩‘>’ 
⟨xml-openclose-tag⟩ ::= ‘<’⟨id⟩‘/>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘/>’ 
⟨xml-attribute⟩ ::= ⟨id⟩ ‘="’ ⟨text⟩ ‘"’

 | ⟨xml-attribute⟩ ‘␣’ ⟨xml-attribute⟩

🦹⟨text⟩ ::= ‘"; DROP TABLE Students; --’ | ⟨other-text⟩

🦸

Specifying Inputs
Context-Free Grammars

⟨xml-tree⟩ ::= ⟨xml-openclose-tag⟩ 
 | ⟨xml-open-tag⟩ ⟨inner-xml-tree⟩ ⟨xml-close-tag⟩

⟨inner-xml-tree⟩ ::= ⟨text⟩ | ⟨xml-tree⟩

 | ⟨inner-xml-tree⟩ ⟨inner-xml-tree⟩

⟨xml-open-tag⟩ ::= ‘<’⟨id⟩‘>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘>’  
⟨xml-close-tag⟩ ::= ‘</’⟨id⟩‘>’ 
⟨xml-openclose-tag⟩ ::= ‘<’⟨id⟩‘/>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘/>’ 
⟨xml-attribute⟩ ::= ⟨id⟩‘="’⟨text⟩‘"’

 | ⟨xml-attribute⟩ ‘␣’ ⟨xml-attribute⟩

🦸

<O cfg="ej45"><Qr hh="21"></P>…This is not XML

Specifying Inputs
The ISLa Specification Language
⟨xml-tree⟩ ::= ⟨xml-openclose-tag⟩ 
 | ⟨xml-open-tag⟩ ⟨inner-xml-tree⟩ ⟨xml-close-tag⟩

⟨inner-xml-tree⟩ ::= ⟨text⟩ | ⟨xml-tree⟩

 | ⟨inner-xml-tree⟩ ⟨inner-xml-tree⟩

⟨xml-open-tag⟩ ::= ‘<’⟨id⟩‘>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘>’  
⟨xml-close-tag⟩ ::= ‘</’⟨id⟩‘>’ 
⟨xml-openclose-tag⟩ ::= ‘<’⟨id⟩‘/>’ | ‘<’⟨id⟩‘␣’⟨xml-attribute⟩‘/>’ 
⟨xml-attribute⟩ ::= ⟨id⟩‘="’⟨text⟩‘"’

 | ⟨xml-attribute⟩ ‘␣’ ⟨xml-attribute⟩

🦸

<O cfg="ej45"><Qr hh="21"></Qr>…

forall <xml-tree> tree="<{⟨id⟩ opid}[⟨xml-attribute⟩]>
 ⟨inner-xml-tree⟩
 </{⟨id⟩ clid}>" in start:
(= opid clid)

Grammar

Constraints
+

This is XML

Input Constraints
The ISLa Specification Language 🦸

<O cfg="ej45"><Qr hh="21"></Qr>…

forall <xml-tree> tree="<{⟨id⟩ opid}[⟨xml-attribute⟩]>
 ⟨inner-xml-tree⟩
 </{⟨id⟩ clid}>" in start:
(= opid clid)

This is XML

Satisfying Constraints 🦸
• ISLa takes a (context-free) grammar

and (SMT) constraints

• Produces inputs that satisfy grammar +
constraints

• Can check inputs whether they fulfill
the constraints

• Full declarative specification of inputs

• Can be paired with any fuzzing strategy

• XML: 18 LOC, TAR: 61 LOC

The ISLa Fuzzer + Checker

ISLa

Grammar Constraints

Valid Inputs

Learning Input Languages
The ISLearn Invariant Miner 🦹

• ISLearn takes a (mined?) grammar
and a set of inputs

• From a set of patterns, determines
constraints that hold for all inputs

• Validates constraint candidates
using extra (generated) tests

• Patterns include length constraints,
checksums, def/use, and more

• Learned Racket, Dot, ICMP with
78–97% accuracy

ISLa

ISLearn

Grammar Inputs Patterns

Constraints

Valid Inputs

Demo

Taming Fuzzers

You want full automation – but also control:

• If you have inputs or traces, use them

• If you have the source code, use it

• If you have a spec and/or test cases, use them

• If you have an idea where the bugs are, use it

• If you have an idea of what a bug is, use it

{One
Fuzzer

Can learn constraints from inputs

Can learn Grammar from code

Can write and/or edit language specs

Can direct generation towards bugs

Can apply checkers to outputs, Too

🦹❤🦸

Learn More about ISLa

Dominic Steinhöfel https://publications.cispa.saarland/3596/1/main.pdf

Input Invariants
Dominic Steinhöfel

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany

dominic.steinhoefel@cispa.de

Andreas Zeller
CISPA Helmholtz Center for Information Security

Saarbrücken, Germany
zeller@cispa.de

ABSTRACT
Grammar-based fuzzers are highly e�cient in producing syntac-
tically valid system inputs. However, as context-free grammars
cannot capture semantic input features, generated inputs will often
be rejected as semantically invalid by a target program. We pro-
pose ISLa, a declarative speci�cation language for context-sensitive
properties of structured system inputs based on context-free gram-
mars. With ISLa, it is possible to specify input constraints like “a
variable has to be de�ned before it is used,” “the length of the ‘�le
name’ block in a TAR �le has to equal 100 bytes,” or “the number
of columns in all CSV rows must be identical.”

ISLa constraints can be used for parsing or validation (“Does an
input meet the expected constraint?”) as well as for fuzzing, since
we provide both an evaluation and input generation component. ISLa
embeds SMT formulas as an island language, leveraging the power
of modern solvers like Z3 to solve atomic semantic constraints.
On top, it adds universal and existential quanti�ers over the struc-
ture of derivation trees from a grammar, and structural (“X occurs
before Y”) and semantic (“X is the checksum of Y”) predicates.

ISLa constraints can be speci�ed manually, but also mined from
existing input samples. For this, our ISLearn prototype uses a cat-
alog of common patterns (such as the ones above), instantiates
these over input elements, and retains those candidates that hold
for the inputs observed and whose instantiations are fully accepted
by input-processing programs. The resulting constraints can then
again be used for fuzzing and parsing.

In our evaluation, we show that a few ISLa constraints su�ce to
produce inputs that are 100% semantically valid while still maintain-
ing input diversity. Furthermore, we con�rm that ISLearnmines use-
ful constraints about de�nition-use relationships and (implications
between) the existence of “magic constants”, e.g., for programming
languages and network packets.

CCS CONCEPTS
• Software and its engineering! Software testing and debug-
ging; Speci�cation languages; Constraint and logic languages;
Syntax; Semantics; Parsers; Software reverse engineering; Documen-
tation; • Theory of computation ! Grammars and context-
free languages; Formalisms.

KEYWORDS
fuzzing, speci�cation language, grammars, constraint mining

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CISPA Tech Report, March 2022, CISPA
© 2022 Copyright held by the owner/author(s).

1 INTRODUCTION
Automated software testing with random inputs (fuzzing) [19] is
an e�ective technique for �nding bugs in programs. Pure random
inputs can quickly discover errors in input processing. Yet, if a
program expects complex structured inputs (e.g., C programs, JSON
expressions, or binary formats), the chances of randomly produc-
ing valid inputs that are accepted by the parser and reach deeper
functionality are low.

Language-based fuzzers [8, 12, 13] overcome this limitation by
generating inputs from a speci�cation of a program’s expected
input language, frequently expressed as a Context-Free Grammar
(CFG). This considerably increases the chance of producing an input
passing the program’s parsing stage and reaching its core logic. Yet,
while being great for parsing,CFGs are often too coarse for producing
inputs. Consider, e.g., the language of XML documents (without
document type). This language is not context free.1 Still, it can be
approximated by a CFG. Fig. 1 shows an excerpt of a CFG for XML.
When we used a coverage-based fuzzer to produce 10,000 strings
from this grammar, exactly one produced document (<O L=�cmV�>
õ! B7</O>) contained a matching tag pair. This result is typical for
language-based fuzzers used with a language speci�cation designed
for parsing which therefore is more permissive than a language
speci�cation for producing would have to be. This is unfortunate,
as hundreds of language speci�cations for parsing exist.

To allow for precise production, we need to enrich the grammar
with more information, or switch to a di�erent formalism. However,
existing solutions all have their drawbacks. Using general purpose
code to produce inputs, or enriching grammars with such code is
closely tied to an implementation language, and does not allow
for parsing and recombining inputs, which is a common feature of
modern fuzzers. Unrestricted grammars can in principle specify any
computable input property, but we see them as “Turing tar-pits,” in
which “everything is possible, but nothing of interest is easy” [22]—
just try, for instance, to express that some number is the sum of two
input elements. Finally, one could also replace CFGs by a di�erent
formalism; but this would mean to renounce a concept that many
developers know (e.g., from the ANTLR parser generator or RFCs).

In this paper, we bring forward a di�erent solution by propos-
ing a (programming and target) language-independent, declarative
speci�cation language named ISLa (Input Speci�cation Language)
for expressing context-sensitive constraints over CFGs. By enriching
existing grammars with constraints, we leverage the simplicity of
CFGs, while permitting to signi�cantly extend their limited ex-
pressiveness. When formalizing a new target language, one starts
with the de�nition of a CFG (which, for many languages, might be
readily available somewhere in the internet). Then, one iteratively
strengthens the de�nition by adding more and more ISLa constraints

1Apply the pumping lemma with <a=b=></a=b=>.

1

🦸🦹

Fuzzing Workshop @ NDSS'22 • April 24, 2022

Fuzzing: A Tale of Cultures
Andreas Zeller

SecuritySoftware 
Engineering

test own programs test other programs

! "
("Test generation") ("Fuzzing")

Input Invariants
ISLa input specification language + ISLearn invariant miner

• ISLearn learns
constraints from
given inputs

• Full declarative
specification

• Validated through
generated tests

ISLa

ISLearn

Grammar Inputs Patterns

Constraints

Valid Inputs

• ISLa takes a (context-free) grammar
and (SMT) constraints

• ISLa produces and checks inputs that
satisfy grammar + constraints

Taming Fuzzers

You want full automation – but also control:

• If you have inputs or traces, use them

• If you have the source code, use it

• If you have a spec and/or test cases, use them

• If you have an idea where the bugs are, use it

• If you have an idea of what a bug is, use it

{One
Fuzzer

Can learn constraints from inputs

Can learn Grammar from code

Can write and/or edit language specs

Can direct generation towards bugs

Can apply checkers to outputs, Too

!❤#

Two Cultures – Reviewing

!"# $%&
• Focus is on future

• Want guidance for testing decisions

• Focus on conceptual improvements

• Want explanations on how numbers come to be

• Want details on decisions and rationales

• Want to know when and why things will not work

• Expect open science principles

• Focus is on here and now

• Expect vulnerabilities or even exploits

• Want hard-to-test systems as benchmarks

• Want no assumptions; expect full automation

• Expect scalability and versatility

• Expect you are better than others

• Expect tools + data only after acceptance

🦸🦹

Fuzzing Workshop @ NDSS'22 • April 24, 2022

Fuzzing: A Tale of Cultures
Andreas Zeller

SecuritySoftware 
Engineering

test own programs test other programs

! "
("Test generation") ("Fuzzing")

Input Invariants
ISLa input specification language + ISLearn invariant miner

• ISLearn learns
constraints from
given inputs

• Full declarative
specification

• Validated through
generated tests

ISLa

ISLearn

Grammar Inputs Patterns

Constraints

Valid Inputs

• ISLa takes a (context-free) grammar
and (SMT) constraints

• ISLa produces and checks inputs that
satisfy grammar + constraints

Taming Fuzzers

You want full automation – but also control:

• If you have inputs or traces, use them

• If you have the source code, use it

• If you have a spec and/or test cases, use them

• If you have an idea where the bugs are, use it

• If you have an idea of what a bug is, use it

{One
Fuzzer

Can learn constraints from inputs

Can learn Grammar from code

Can write and/or edit language specs

Can direct generation towards bugs

Can apply checkers to outputs, Too

!❤#

Two Cultures – Reviewing

!"# $%&
• Focus is on future

• Want guidance for testing decisions

• Focus on conceptual improvements

• Want explanations on how numbers come to be

• Want details on decisions and rationales

• Want to know when and why things will not work

• Expect open science principles

• Focus is on here and now

• Expect vulnerabilities or even exploits

• Want hard-to-test systems as benchmarks

• Want no assumptions; expect full automation

• Expect scalability and versatility

• Expect you are better than others

• Expect tools + data only after acceptance

We're hiring!

!"#$%&

