
Registered Report: NSFuzz: Towards Efficient
and State-Aware Network Service Fuzzing
𝐒𝐡𝐢𝐬𝐨𝐧𝐠 𝐐𝐢𝐧𝟏, 𝐅𝐚𝐧 𝐇𝐮𝟐, 𝐁𝐨𝐝𝐨𝐧𝐠 𝐙𝐡𝐚𝐨𝟏, 𝐓𝐢𝐧𝐠𝐭𝐢𝐧𝐠 𝐘𝐢𝐧𝟏, 𝐂𝐡𝐚𝐨 𝐙𝐡𝐚𝐧𝐠𝟏

1. Tsinghua University
2. State Key Laboratory of Mathematical Engineering and Advance

Vulnerability in Network Service
Vulnerabilities in network service enable attackers to launch remote
exploits much easier than in local applications

Heartbleed from OpenSSL
Remote Confidential Data Leakage

WannaCry from Microsoft’s SMB protocol
Ransomware Cyberattack

Fuzzing

The workflow of coverage-guided grey-box fuzzing

Input
Seed

Testcase
Mutator

Testcase Target
Execution

Seed Pool

Coverage
Feedback

Seed
Preservation

Monitor
Security

Violation?

Bugs

Yes

No

Related Work

Black-Box Network
Fuzzing

SPIKE
SNOOZE

KiF
AutoFuzz
PULSAR

Peach
boofuzz

IoTHunter
yFuzz

SGPFuzz
AFLNet

StateAFL

Prospex
PRETT
IJON

FuzzFactory
AFLNet

StateAFL

Grey-Box Network
Fuzzing

Program State
Model Inference

Have limitations in fuzzing efficiency or service state representation

Features of Network Service
Multiple Network I/O Interactions

RTSP protocol state model

Involving State Transition (Stateful)

Multiple interactions between
FTP client/server

PLAYING

RAEDYINIT

6(783

7($5'2:1

3/$<

3$86(

3/$<�6(783

7($5'2:1

7($5'2:1

Challenges in Network Service Fuzzing
Ø Service State Representation

Ø Most existing grey-box fuzzers are mainly designed for local stateless applications

Ø Fuzzer without state-aware may mislead the evolutionary direction of genetic algorithms
due to the stateful of network services

The FTP state model inferred by AFLNet

[1]. Pham V T, Böhme M, et al. AFLNet: A Greybox Fuzzer for Network Protocols. ICST, 2020

AFLNet[1] : Response code based
state representation scheme

Challenges in Network Service Fuzzing
Ø Testing Efficiency

Ø Network services are always designed as C/S architecture, requiring multiple I/O

Ø Fuzzer needs to conduct multiple interactions to fuzz the service in-depth, and the control
of interaction is vital to the fuzzing efficiency

Fuzzer Service Under
Test

Message Sequence

Timer

Timer-based I/O interaction control
used by AFLNet[1] and StateAFL[2]

[1]. Pham V T, Böhme M, et al. AFLNet: A Greybox Fuzzer for Network Protocols. ICST, 2020
[2]. Roberto Natella. StateAFL: Greybox Fuzzing for Stateful Network Servers

Case Study

Code snippet from FTP service BFTPD

Case Study

Code snippet from FTP service BFTPD

Network Service

Ø Use an event loop to perform multiple I/O
interactions

Case Study

Code snippet from FTP service BFTPD

Network Service

Ø Use an event loop to perform multiple I/O
interactions

Ø Use specific variable to record the current
service state

Case Study

Code snippet from FTP service BFTPD

Network Service

Ø Use an event loop to perform multiple I/O
interactions

Ø Use specific variable to record the current
service state

Ø Execute different code according to current
state, and update the state in specific handler

Insights
Ø Service State Representation

Ø Network services always use some specific variables to represent the service state directly

Ø Such “state variable” could represent the service state more accurately and reasonably

Ø Testing Efficiency

Ø Network services always have some clear point to indicate the message processing status

Ø E.g., the beginning of event loop indicates the previous message has been handled

Ø Such “I/O sync point” could give fuzzer timely feedback to enable efficient I/O interaction

Approach —— NSFuzz

An efficient and state-aware network service fuzzer

Ø Variable-based accurate service state representation

Ø Efficient network I/O synchronization mechanism

Overview Design

The workflow of NSFuzz

• Perform static analysis to identify the event loop (I/O sync point) and extract state variables

• Conduct compile-time instrumentation to enable the target to have the capabilities of signal-based
fast I/O synchronization and variable-based service state tracing

• Carry out efficient and state-aware network service fuzzing loop

Static Analysis

Static Analyzer Instrumented
Network Service

Execution

Coverage
Feedback

Efficient State
Feedback

Seed Pool testcase

Current
Coverage

State Model Inference

Fuzzing Loop

Network
Event Loop

State Variable
List

Compile-Time
Instrumentation

Crash Report

Message
Mutation

State Guided
Seed Selection

Seed
Preservation

Network
Service

Probe
Message

Backtrace

Source
Code

Initial
Seed

Ø Event Loop Identification

• Use the backtrace of probe message to identify event loop

• network I/O contained, outermost in the nested loop

Ø State Variable Extraction

• Use a series of heuristic rules to extract state variables

• range constraint, operation constraint, variable constraint

Static Analysis

Compile-Time Instrumentation
Ø Signal Feedback Instrumentation

• Insert signal raising function at the I/O sync point to give fuzzer feedback

• e.g., raise(SIGSTOP)

Compile-Time Instrumentation
Ø Signal Feedback Instrumentation

• Insert signal raising function at the I/O sync point to give fuzzer feedback

• e.g., raise(SIGSTOP)

Ø State Tracing Instrumentation

• Setup another shared memory (shared_state) between fuzzer and SUT

• Insert state tracing function at STORE operation of each state variable

• 𝑠ℎ𝑎𝑟𝑒𝑑_𝑠𝑡𝑎𝑡𝑒[ℎ𝑎𝑠ℎ 𝑣𝑎𝑟#$ ⊕ 𝑐𝑢𝑟_𝑠𝑡𝑜𝑟𝑒_𝑣𝑎𝑙] = 1
• 𝑠ℎ𝑎𝑟𝑒𝑑_𝑠𝑡𝑎𝑡𝑒[ℎ𝑎𝑠ℎ 𝑣𝑎𝑟#$ ⊕ 𝑝𝑟𝑒_𝑠𝑡𝑜𝑟𝑒_𝑣𝑎𝑙] = 0

Fuzzing Loop
Fuzzer Service Under

Test

socket connection

message
send

message recv &
state update

signal send
signal recv&

state collection

message

feedback

signal

shared_state

The interaction process between fuzzer
and SUT in each testcase

Ø Fast I/O synchronization

Fuzzing Loop
Fuzzer Service Under

Test

socket connection

message
send

message recv &
state update

signal send
signal recv&

state collection

message

feedback

signal

shared_state

Ø Fast I/O synchronization
Ø Each time the fuzzer sends a

message, it waits for the signal
feedback from service

The interaction process between fuzzer
and SUT in each testcase

Fuzzing Loop
Fuzzer Service Under

Test

socket connection

message
send

message recv &
state update

signal send
signal recv&

state collection

message

feedback

signal

shared_state

Ø Fast I/O synchronization
Ø Each time the fuzzer sends a

message, it waits for the signal
feedback from service

Ø Service receives the message,
processes it to update shared_state,
then sends a signal

The interaction process between fuzzer
and SUT in each testcase

Fuzzing Loop
Fuzzer Service Under

Test

socket connection

message
send

message recv &
state update

signal send
signal recv&

state collection

message

feedback

signal

shared_state

Ø Fast I/O synchronization
Ø Each time the fuzzer sends a

message, it waits for the signal
feedback from service

Ø Service receives the message,
processes it to update shared_state,
then sends a signal

Ø Fuzzer receives the signal, collects
state representation, then sends the
next message

The interaction process between fuzzer
and SUT in each testcase

Fuzzing Loop
Ø Service State Tracing Fuzzer

The process of shared_state update and state collection

0

0

1

0

1

0

0

shared_state

var1 = 1

var2 = 2

⋮

Fuzzing Loop

Fuzzer

The process of shared_state update and state collection

Fuzzer S1 …

state transition sequence

hash

Ø Service State Tracing
Ø Fuzzer hash the shared_state to

collect state representation when
receiving signal feedback

0

0

1

0

1

0

0

shared_state

var1 = 1

var2 = 2

⋮

Fuzzing Loop

Fuzzer

The process of shared_state update and state collection

Fuzzer S1 …

state transition sequence

hash

Ø Service State Tracing
Ø Fuzzer hash the shared_state to

collect state representation when
receiving signal feedback

Ø A change in any state variable
would lead to a change in the
hash of shared_state

0

0

1

0

1

0

0

shared_state

var1 = 1

var2 = 2

⋮

0

0 → 1

1 → 0

0

1 → 0

0

0 → 1

message
processing

shared_state

var1 = 1 2→

var2 = 2 1→

⋮

Fuzzing Loop

Fuzzer

The process of shared_state update and state collection

Fuzzer S1 …

state transition sequence

hash

Ø Service State Tracing
Ø Fuzzer hash the shared_state to

collect state representation when
receiving signal feedback

Ø A change in any state variable
would lead to a change in the
hash of shared_state

Ø Fuzzer continuous collects
state to build transition sequence
(model inference)

0

0

1

0

1

0

0

shared_state

var1 = 1

var2 = 2

⋮

0

0 → 1

1 → 0

0

1 → 0

0

0 → 1

message
processing

shared_state

var1 = 1 2→

var2 = 2 1→

⋮

S2

hash

Preliminary Evaluation on NSFuzz

Ø RQ1: Accurateness of state module inferred by NSFuzz

Ø Could NSFuzz inference relatively more accurate & reasonable state
model based on the state variables during the fuzzing loop?

Ø RQ2: Effectiveness of NSFuzz state-aware fuzzing

Ø Could NSFuzz achieve higher fuzzing efficiency and overall results than
other existing approaches?

Experiment Setup
• 7 targets from ProFuzzBench[1]

• Compared with AFLNet [2] /AFLNwe [3] /StateAFL [4]

The selected evaluation target

Target Service Network Protocol Version/Commit Transport Layer Language

LightFTP FTP 5980ea1 TCP C
Bftpd FTP v5.7 TCP C

Pure-FTPd FTP c21b45f TCP C
Exim SMTP 38903fb TCP C

Dnsmasq DNS v2.73rc6 UDP C
TinyDTLS DTLS 06995d4 UDP C
Kamailio SIP 2648eb3 UDP C

[1]. https://github.com/profuzzbench/profuzzbench
[2]. https://github.com/profuzzbench/aflnet
[3]. https://github.com/profuzzbench/aflnwe
[4]. https://github.com/stateafl/stateafl

State Module Inference Evaluation (RQ1)

Target Service LoC Network
Event Loop

State Variable
Analysis TimeNumber Example

LightFTP 4.4k √ 1 Access 0.7s
Bftpd 4.7k √ 6 state 1.8s

Pure-FTPd 30k √ 22 loggedin 3.9s
Exim 101.7k √ 58 helo_seen 45.1s

Dnsmasq 27.6k √ 15 found 11.4s
TinyDTLS 10.8k √ 4 state 3.2s
Kamailio 766.7k √ 58 state 441.9s

The static analysis results on evaluation target

State Module Inference Evaluation (RQ1)
Target Service Fuzzer State Module

Vertexes Edges

LightFTP
AFLNET 23 158
STATEAFL 11 47
NSFuzz 5 12

Bftpd
AFLNET 24 126
STATEAFL 4 6
NSFuzz 43 137

Pure-FTPd
AFLNET 27 260
STATEAFL 7 22
NSFuzz 8 22

Exim
AFLNET 12 60
STATEAFL 7 17
NSFuzz 128 225

Dnsmasq
AFLNET 89 271
STATEAFL 108 467
NSFuzz 3 5

TinyDTLS
AFLNET 9 24
STATEAFL 29 69
NSFuzz 32 115

Kamailio
AFLNET 13 93
STATEAFL 4 4
NSFuzz 99 328

The state model inferred by various fuzzers

0
1

2

3

4

The state model of LightFTP inferred by NSFuzz

Fuzzing Efficiency Evaluation (RQ2)

Target Service
Fuzzing Throughput (exec/s)

AFLNet AFLNwe StateAFL NSFuzz
LightFTP 8.42 +330.8% -55.6% +558.9%

Bftpd 4.09 +144.0% -45.2% +869.7%
Pure-FTPd 5.29 +115.3% -80.0% +175.0%

Exim 2.69 +108.6% +35.3% +113.4%
Dnsmasq 7.47 +454.2% -82.7% +645.1%

TinyDTLS 2.66 +458.3% -47.0% +5488.0%
Kamailio 5.19 +20.8% -49.7% +512.5%

The average fuzzing throughput of various fuzzers toward each target service

Fuzzing Efficiency Evaluation (RQ2)

The average branch coverage growth in 12h of various fuzzers toward each target service

Fuzzing Efficiency Evaluation (RQ2)

Target Service
Crash Trigger Time (s)

AFLNet AFLNwe StateAFL NSFuzz

Dnsmasq 990.5s 989.25s 878.75s 160s
TinyDTLS 26s 11.75s 47.75s < 1s

The average crash trigger time of various fuzzers toward each target service

Ø Scalability

Ø Service Pattern Support (libevent-based target)

Ø Service Language Support (other than C)

Ø False Positive in state variable extraction (leading to state explosion)

Limitations

The fragile of Static Analysis is the main reason (e.g., ad-hoc analysis rules…)

Conclusion

Ø Analyzed the state representation and testing efficiency
challenges of network service fuzzing

Ø Proposed NSFuzz, a network service fuzzer combined with variable-
based state representation and efficient I/O synchronization

Ø Preliminary evaluated NSFuzz on ProFuzzBench, and the results
showed NSFuzz could infer a accurate state model and achieve a
higher fuzzing efficiency than some other existing solutions

Ø Annotation API

Ø I/O Sync Point Annotation

Ø Multiple I/O point supported

Ø libevent-based target supported

Ø State Variable Annotation

Ø Eliminate false positive

Ø Precise annotation

Ongoing Work

I/O sync point annotation usage demo

state variable annotation usage demo

Ongoing Work

Ø Ablation Study

The average branch coverage growth in 12h of various fuzzers toward each target service

NSFuzz-V: NSFuzz with variable-based state representation only enabled

Thanks for Listening!

Q & A

Contact: qss19@mails.tsinghua.edu.cn

