
Dissecting American Fuzzy Lop
A FuzzBench Evaluation

Andrea Fioraldi¹, Alessandro Mantovani¹, Dominik Maier², Davide Balzarotti¹

@andreafioraldi

fioraldi@eurecom.fr

¹EURECOM, ²TU Berlin

https://twitter.com/andreafioraldi
mailto:fioraldi@eurecom.fr


American Fuzzy Lop

2Dissecting American Fuzzy Lop - A FuzzBench Evaluation



Why

3Dissecting American Fuzzy Lop - A FuzzBench Evaluation From https://fuzzing-survey.org/

https://fuzzing-survey.org/


Core Principles

4Dissecting American Fuzzy Lop - A FuzzBench Evaluation

● speed

○ forkserver, bitwise operations for coverage evaluation, L2-sized shared map, 

lightweight inline instrumentation



Core Principles

5Dissecting American Fuzzy Lop - A FuzzBench Evaluation

● speed

● reliability

○ forkserver, calibration and stability detection, low memory usage



Core Principles

6Dissecting American Fuzzy Lop - A FuzzBench Evaluation

● speed

● reliability

● ease of use

○ corpus as a queue, deterministic mutations, testcases minimization, 

dictionaries



Coverage-guided Fuzzing

Corpus Input 
Mutation

Program 
Under Test

Failures

Coverage

7Dissecting American Fuzzy Lop - A FuzzBench Evaluation



AFL

Corpus Input 
Mutation

Program 
Under Test

Failures

Coverage

8Dissecting American Fuzzy Lop - A FuzzBench Evaluation

Queue

Hitcounts
Deterministic Havoc Splice

Calibrate

Trim

Corpus Culling

Score



Evaluating AFL aspects

9Dissecting American Fuzzy Lop - A FuzzBench Evaluation

By reviewing the implementation and the internals of AFL, we identified nine 

characteristics to assess in our tests.

We mainly use the bug benchmark of FuzzBench, which consists of 25 targets known to 

contain bugs.

Each program is executed for 23 hours. The reported results are median values over 20 

trials to mitigate the effects of randomness in fuzzing and the Mann-Whitney U test 

is used to verify the statistical significance of the results. The aggregation of the 

results is done using an average normalized score.



Hitcounts

10Dissecting American Fuzzy Lop - A FuzzBench Evaluation

cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

To avoid path explosion each entry is then divided into buckets:

1, 2, 3, 4-7, 8-15, 16-31, 32-127, 128+



Preliminary Evaluation

11Dissecting American Fuzzy Lop - A FuzzBench Evaluation



Preliminary Evaluation

12Dissecting American Fuzzy Lop - A FuzzBench Evaluation



Novelty search vs. fitness maximization

13Dissecting American Fuzzy Lop - A FuzzBench Evaluation



Preliminary Evaluation

14Dissecting American Fuzzy Lop - A FuzzBench Evaluation



Preliminary Evaluation

15Dissecting American Fuzzy Lop - A FuzzBench Evaluation



Corpus culling

16Dissecting American Fuzzy Lop - A FuzzBench Evaluation

AFL, periodically, evaluates the testcases in queue. It assigns a score proportional 

on execution latency and file size. Then, for each index of the bitmap, it selects 

the testcase with lowest score.

A minimized set of the corpus is devised in this way:

1. Find next index not yet in the temporary working set,

2. Locate the winning queue entry for this index,

3. Register *all* indexes present in that entry's trace in the working set,

4. Go to #1 if there are any missing indexes in the set.

All the located winning queue entries are marked as favored.



Corpus culling

17Dissecting American Fuzzy Lop - A FuzzBench Evaluation

AFL, periodically, evaluates the testcases in queue. It assigns a score proportional 

on execution latency and file size. Then, for each index of the bitmap, it selects 

the testcase with lowest score.

A minimized set of the corpus is devised in this way:

1. Find next index not yet in the temporary working set,

2. Locate the winning queue entry for this index,

3. Register *all* indexes present in that entry's trace in the working set,

4. Go to #1 if there are any missing indexes in the set.

All the located winning queue entries are marked as favored.

Can a fuzzer that reasons on the entire queue 

and not on a minimized set of testcase trigger 

different bugs due to the increased diversity?



Score calculation

18Dissecting American Fuzzy Lop - A FuzzBench Evaluation

The performance score used to calculate how many times to mutate and execute the 

input in the havoc and splice stages are derived from many variables, mainly testcase 

size and execution time.

In this experiment, we want to measure the delta between the AFL solution and the 

baseline, represented by a constant (two variants, minimum and maximum score) and a 

random score.

In addition, we include in the experiment a variant that does not prioritize novel 

corpus entries as this was a significant optimization in the AFL history.



Score calculation

19Dissecting American Fuzzy Lop - A FuzzBench Evaluation

The performance score used to calculate how many times to mutate and execute the 

input in the havoc and splice stages are derived from many variables, mainly testcase 

size and execution time.

In this experiment, we want to measure the delta between the AFL solution and the 

baseline, represented by a constant (two variants, minimum and maximum score) and a 

random score.

In addition, we include in the experiment a variant that does not prioritize novel 

corpus entries as this was a significant optimization in the AFL history.

Is the different score changing drastically 

the outcome of the fuzzer? We foresee that the 

major contribution is the prioritization of 

the novelties, with a small delta between the 

other variants.



Corpus scheduling

20Dissecting American Fuzzy Lop - A FuzzBench Evaluation

The FIFO policy used by AFL is only one of the possible policies that a fuzzer can 

adopt to select the next testcase. This is a usability feature. However, derived 

works tend to take the corpus structure as a queue for granted.

We want to evaluate AFL versus a modified version that implements the baseline, 

random selection, and the opposite approach, a LIFO scheduler.



Corpus scheduling

21Dissecting American Fuzzy Lop - A FuzzBench Evaluation

The FIFO policy used by AFL is only one of the possible policies that a fuzzer can 

adopt to select the next testcase. This is a usability feature. However, derived 

works tend to take the corpus structure as a queue for granted.

We want to evaluate AFL versus a modified version that implements the baseline, 

random selection, and the opposite approach, a LIFO scheduler.

We expect that the random performs equal or 

even better than the original AFL, while the 

LIFO approach may help in gaining coverage 

faster on some targets.



Splicing as stage vs. splicing as mutation

22Dissecting American Fuzzy Lop - A FuzzBench Evaluation

Splicing refers to the operation that merges two different testcases. In AFL, it is a 

stage in which the merge happens before the mutations and the the havoc mutator is 

applied on the merged testacase.

However, other fuzzers (e.g. Libfuzzer) often implement splicing as a mutation rather 

than a stage, thus applying it many more times for each testcase during their havoc 

stage.

Splicing as a stage has the roots in usability, as it leads to less convoluted 

testcases.



Splicing as stage vs. splicing as mutation

23Dissecting American Fuzzy Lop - A FuzzBench Evaluation

Splicing refers to the operation that merges two different testcases. In AFL, it is a 

stage in which the merge happens before the mutations and the the havoc mutator is 

applied on the merged testacase.

However, other fuzzers (e.g. Libfuzzer) often implement splicing as a mutation rather 

than a stage, thus applying it many more times for each testcase during their havoc 

stage.

Splicing as a stage has the roots in usability, as it leads to less convoluted 

testcases.

We expect that a splicing as mutation in AFL 

can increase the exploration of the fuzzer

while reducing the simplicity of the testcases 

and, therefore, complicating the a-posteriori 

triaging phase.



Trimming

24Dissecting American Fuzzy Lop - A FuzzBench Evaluation

Trimming the testcases allows the fuzzer to reduce the size of the input files and 

consequently give priority to small inputs, under the assumptions that large inputs 

introduce a slowdown in the execution and the mutations would be less likely to 

modify an important portion of the binary structure.

Despite the fact that this algorithm can bring the two important benefits described 

above, we argue that reducing the size of the testcases could lead to lose state 

coverage and this operation can be a bottleneck for slow targets.



Trimming

25Dissecting American Fuzzy Lop - A FuzzBench Evaluation

Trimming the testcases allows the fuzzer to reduce the size of the input files and 

consequently give priority to small inputs, under the assumptions that large inputs 

introduce a slowdown in the execution and the mutations would be less likely to 

modify an important portion of the binary structure.

Despite the fact that this algorithm can bring the two important benefits described 

above, we argue that reducing the size of the testcases could lead to lose state 

coverage and this operation can be a bottleneck for slow targets.

Our hypothesis is that trimming can be either 

beneficial or detrimental depending on the 

type of target program and the structure of 

its input.



Timeout Calculation

26Dissecting American Fuzzy Lop - A FuzzBench Evaluation

AFL can automatically compute a timeout value for the program under test. More 

specifically, as a first step, AFL calibrates the execution speed during an initial 

phase by running the target several times and computing an average of the execution 

times. After that, the default heuristic applies a constant factor (x5) to this 

average value and rounds it up to 20 ms.

In our experiments, we try to modify the multiplicative factor (2x, 10x) to measure 

its effect on the fuzzing session.



Timeout Calculation

27Dissecting American Fuzzy Lop - A FuzzBench Evaluation

AFL can automatically compute a timeout value for the program under test. More 

specifically, as a first step, AFL calibrates the execution speed during an initial 

phase by running the target several times and computing an average of the execution 

times. After that, the default heuristic applies a constant factor (x5) to this 

average value and rounds it up to 20 ms.

In our experiments, we try to modify the multiplicative factor (2x, 10x) to measure 

its effect on the fuzzing session.

We expect that a higher timeout can lead to a 

better coverage, but also

degrade the performance of the fuzzer, while a 

smaller one can detrimental in the long run.



Collisions

28Dissecting American Fuzzy Lop - A FuzzBench Evaluation

In our evaluation, we want to compare the AFL instrumentations approach against a 

collision-free one.SanitizerCoverage splits critical edges into basic blocks and 

trace them at runtime with guard variables. AFL assigns random indentifiers to the 

guards and so having collisions, but a simple incremental counter instead would 

remove the collisions.

We want to benchmark this feature as the collision-free variant is simpler than the 

original implementation with pcguard, raising the question why random identifiers are 

used in AFL. In addition, it is unclear if the lack of feedback from the indirect 

jumps affects the performance more than the collisions, so we include the classic 

approach too in order to benchmark this impact.



Collisions

29Dissecting American Fuzzy Lop - A FuzzBench Evaluation

In our evaluation, we want to compare the AFL instrumentations approach against a 

collision-free one.SanitizerCoverage splits critical edges into basic blocks and 

trace them at runtime with guard variables. AFL assigns random indentifiers to the 

guards and so having collisions, but a simple incremental counter instead would 

remove the collisions.

We want to benchmark this feature as the collision-free variant is simpler than the 

original implementation with pcguard, raising the question why random identifiers are 

used in AFL. In addition, it is unclear if the lack of feedback from the indirect 

jumps affects the performance more than the collisions, so we include the classic 

approach too in order to benchmark this impact.

We expect an improvement in coverage for the 

collision-free variant but it is unclear if it 

can outperforms the classic instrumentation 

with the hash of the previous and current 

block.



Thank you!

Questions?

30Dissecting American Fuzzy Lop - A FuzzBench Evaluation


