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whoami

● PhD student at ANU

● Interests in fuzzing, binary 

analysis, program analysis
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coverage = control-flow coverage



This is changing…
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This is changing…
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Data flow is becoming a “first-class citizen”



The “coverage spectrum”*
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* Not to scale



The “coverage spectrum”
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Requirements

1. Define “data-flow coverage”

2. Efficiently track data flows

3. Data flows → fuzzer coverage

4. Evaluate!
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1. Defining “data-flow coverage”
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1. Defining “data-flow coverage”
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Data-flow coverage is the 
tracking of def/use chains 
executed at runtime
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1. Defining “data-flow coverage”
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Def site: Variable allocation site (static and dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site



1. Defining “data-flow coverage”
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Def site: Variable allocation site (static and dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site

How to efficiently implement this?
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Problem: Tracking all 
data flows is infeasible
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Solution: Track data 
flows at varying 
sensitivities
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2. Efficiently track data flows
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Partition def sites by type
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Partition use sites by access



2. Efficiently track data flows

29

Partition use sites by access



2. Efficiently track data flows
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Compose def/use lattices to realize desired sensitivity



Do efficient 
implementations exist?
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3. Data flows → fuzzer coverage
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3. Data flows → fuzzer coverage
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Def site instrumentation

1. Identify allocation sites (static and dynamic) based on desired 
sensitivity

2. Replace dynamic allocations with tagged allocation

3. “Heapify” static allocations (and tag)
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3. Data flows → fuzzer coverage
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Use site instrumentation

1. Identify based on desired sensitivity (read/write/access)

2. Identified via runtime address
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3. Data flows → fuzzer coverage
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fuzzalloc.so

● Data-flow tracking is reduced to metadata management

● Def site IDs are the metadata to retrieve at use site
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fuzzalloc.so

● Data-flow tracking is reduced to metadata management

● Def site IDs are the metadata to retrieve at use site

Achieved via mid-fat pointers + custom memory allocator
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fuzzalloc.so
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4. Evaluate!

Targets

● Magma benchmark suite (🐛)
● jq JSON parser (📈)

Fuzzers

● datAFLow (with different use site sensitivities)
● AFL++ (with/out cmplog)
● Angora
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4. Evaluate!

Bug-finding results

● datAFLow found less bugs than other fuzzers

● Found two previously-undiscovered bugs
○ In Lua interpreter
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4. Evaluate!

Code-coverage results

● AFL++ subsumed least-sensitive def/use coverage

● datAFLow performed slightly-better when more-sensitive 
metric used

48



4. Evaluate!

Evaluation plan

● Improve performance

● Characterizing target programs

● Quantifying data-flow coverage

● Fuzz!
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4. Evaluate!

Research Qs

● RQ1: Can we characterize target programs for control- vs. data-flow 
coverage?

● RQ2: How can we quantify data-flow coverage?

● RQ3: Is def-use chain fuzzing effective?
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FIN

● Paper @ 
https://www.ndss-symposium.org/wp-conte
nt/uploads/fuzzing2022_23001_paper.pdf

● Code @ 
https://github.com/HexHive/datAFLow
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