
datAFLow: Towards a 
Data-Flow-Guided Fuzzer

Adrian Herrera, Mathias Payer, Antony L. Hosking



whoami

● PhD student at ANU

● Interests in fuzzing, binary 

analysis, program analysis

2



3



4



5



6



7



8



9



10

coverage = control-flow coverage



This is changing…

11



This is changing…

12

Data flow is becoming a “first-class citizen”



The “coverage spectrum”*

13

* Not to scale



The “coverage spectrum”

14



The “coverage spectrum”

15



Requirements

1. Define “data-flow coverage”

2. Efficiently track data flows

3. Data flows → fuzzer coverage

4. Evaluate!

16



Requirements

1. Define “data-flow coverage”

2. Efficiently track data flows

3. Data flows → fuzzer coverage

4. Evaluate!

17



1. Defining “data-flow coverage”

18



1. Defining “data-flow coverage”

19



1. Defining “data-flow coverage”

20



Data-flow coverage is the 
tracking of def/use chains 
executed at runtime

21



1. Defining “data-flow coverage”

22

Def site: Variable allocation site (static and dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site



1. Defining “data-flow coverage”

23

Def site: Variable allocation site (static and dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site

How to efficiently implement this?



Requirements

1. Define “data-flow coverage”

2. Efficiently track data flows

3. Data flows → fuzzer coverage

4. Evaluate!

24



Problem: Tracking all 
data flows is infeasible

25



Solution: Track data 
flows at varying 
sensitivities

26



2. Efficiently track data flows

27

Partition def sites by type



2. Efficiently track data flows

28

Partition use sites by access



2. Efficiently track data flows

29

Partition use sites by access



2. Efficiently track data flows

30

Compose def/use lattices to realize desired sensitivity



Do efficient 
implementations exist?

31



Requirements

1. Define “data-flow coverage”

2. Efficiently track data flows

3. Data flows → fuzzer coverage

4. Evaluate!

32



3. Data flows → fuzzer coverage

33



3. Data flows → fuzzer coverage

34



Def site instrumentation

1. Identify allocation sites (static and dynamic) based on desired 
sensitivity

2. Replace dynamic allocations with tagged allocation

3. “Heapify” static allocations (and tag)

35



3. Data flows → fuzzer coverage

36



Use site instrumentation

1. Identify based on desired sensitivity (read/write/access)

2. Identified via runtime address

37



3. Data flows → fuzzer coverage

38



fuzzalloc.so

● Data-flow tracking is reduced to metadata management

● Def site IDs are the metadata to retrieve at use site

39



fuzzalloc.so

● Data-flow tracking is reduced to metadata management

● Def site IDs are the metadata to retrieve at use site

Achieved via mid-fat pointers + custom memory allocator

40



fuzzalloc.so

41



fuzzalloc.so

42



fuzzalloc.so

43



fuzzalloc.so

44



Requirements

1. Define “data-flow coverage”

2. Efficiently track data flows

3. Data flows → fuzzer coverage

4. Evaluate!

45



4. Evaluate!

Targets

● Magma benchmark suite (🐛)
● jq JSON parser (📈)

Fuzzers

● datAFLow (with different use site sensitivities)
● AFL++ (with/out cmplog)
● Angora

46



4. Evaluate!

Bug-finding results

● datAFLow found less bugs than other fuzzers

● Found two previously-undiscovered bugs
○ In Lua interpreter

47



4. Evaluate!

Code-coverage results

● AFL++ subsumed least-sensitive def/use coverage

● datAFLow performed slightly-better when more-sensitive 
metric used

48



4. Evaluate!

Evaluation plan

● Improve performance

● Characterizing target programs

● Quantifying data-flow coverage

● Fuzz!

49



4. Evaluate!

Research Qs

● RQ1: Can we characterize target programs for control- vs. data-flow 
coverage?

● RQ2: How can we quantify data-flow coverage?

● RQ3: Is def-use chain fuzzing effective?

50



FIN

● Paper @ 
https://www.ndss-symposium.org/wp-conte
nt/uploads/fuzzing2022_23001_paper.pdf

● Code @ 
https://github.com/HexHive/datAFLow

51

https://www.ndss-symposium.org/wp-content/uploads/fuzzing2022_23001_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/fuzzing2022_23001_paper.pdf
https://github.com/HexHive/datAFLow

