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Registered Report: Dissecting American Fuzzy Lop
A FuzzBench Evaluation

Other research directions instead explored different instru-
mentation techniques to study better forms of feedback. A pop-
ular form of feedback, usually considered the de-facto standard
in the fuzzing community, is code coverage. This approach
rewards the fuzzer when a new target execution results in a
different coverage value, computed over the control flow graph
(CFG) of the target application. In general, we refer to this
family of approaches as coverage-guided fuzzing techniques.
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Registered Report: NSFuzz: Towards Efficient and

State-Aware Network Service Fuzzing

recent years, grey box fuzzing solutions that combine genetic
algorithms and code coverage feedbacks have become more
and more popular [8], [9], [10]. For instance, the representative
fuzzer AFL [8] has greatly improved the code coverage and
overall fuzzing effectiveness.
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Registered Report:
Fuzzing Configurations of Program Options

While it is expected that different configurations could result
in different part of code being executed, there is no prior
study that focuses on understanding how tuning a program’s
configurations would affect a fuzzer’s results in terms of code
coverage. The answer to this question can be used to motivate
the design of a fuzzer that fuzzes configurations.
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Registered Report: Generating Test Suites for
GPU Instruction Sets through
Mutation and Equivalence Checking

Coverage-guided fuzzing is used to construct test inputs in
[21] where mutation is used to increase code coverage in an
instruction set simulator. In constrast to these works, we mutate
a stand-alone semantics which is not embedded in a simulator.
We mutate the semantics to deliberately introduce bugs and use
equivalence checking to surface inputs that trigger those bugs.
Coverage-based techniques would complement our method.
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Registered Report: First, Fuzz the Mutants

RQ1 is the overall question of whether any variant of
fuzzing using mutants increases standard fuzzing evaluation
metrics (unique faults detected and code coverage). RQ2-
RQ4 consider some of the primary choices to be made in
implementing fuzzing mutants.
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Registered Report:
Fine-Grained Coverage-Based Fuzzing

Problem. In order to select which of the generated inputs will
be saved for subsequent mutation, current fuzzers run the PUT
with these inputs and measure some form of branch coverage.
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coverage = control-flow coverage
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This is changing...

Fuzzing with Data Dependency Information

Alessandro Mantovani Andrea Fioraldi Davide Balzarotti
EURECOM EURECOM EURECOM
mantovan @eurecom.fr fioraldi@eurecom.fr balzarot@eurecom.fr

The Use of Likely Invariants as Feedback for Fuzzers

Andrea Fioraldi, EURECOM; Daniele Cono D’Elia, Sapienza University of Rome;
Davide Balzarotti, EURECOM

- . 7 https://www.usenix.org/conference/usenixsecurity21/presentation/fioraldi
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This is changing...

Data flow is becoming a “first-class citizen”
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The “coverage spectrum”*
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The “coverage spectrum”
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The “coverage spectrum”
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Requirements

1. Define “data-flow coverage”

2. Efficiently track data flows

3. Data flows — fuzzer coverage

4. Evaluate!
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Requirements

1. Define “data-flow coverage”
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1. Defining “data-flow coverage”
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1. Defining “data-flow coverage”

Authors: Sandra Rapps, . Elaine ). Weyuker Authors Info & Claims

\ ICSE '82: Proceedings of the 6th international conference on Software engineering{{e September 1982)e Pages 272—-278

Online: 13 September 1982 Publication History
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. Defining “data-flow coverage”

Data Flow Analysis Techniques for Test Data Selection

Sandra Rapps® and Elaine J. Weyuker

Department of Computer Science, Courant Institute of Mathematical Sciences.
New York University, 251 Mercer Street, N.Y.. N.Y. 10012

“also. YOURIDN inc., 1133 Ave. of the Americas, N.Y., N.Y. 10036

z

Ermey University

—
#include <stdio.h>
main(}
Abstract select paths through the program whose elements fulfill the chosen based on the dataflow coverage criteria. Figure 1. Sum.c
criterion, and then to find the input data which would cause each We have adapted these dataflow cover-  computes the sum intn. i, k. sum. prod:
This paper examines a family of program test data selection of the chosen paths to be selected. age definitions to define realistic and product of . .,
criteria derived from data flow analysis techniques similar to those . o iection-criieria: has & P printf("Enter an integer and 0 for +. 1 for *: ")
. - oS o Using path selection criteria as test data selection criteria ha dataflow coverage measures for C pro- numbers from 0 Ad " scanf("od °". &n. &K)
used in compiler optimization. It is argued that currently used path . " Consider the strongest path selection criterion > A definition °
selection criteria which examine only the control flow of a program & disinet weakness, (Consier the oness’ paih S B8 A 0 grams. A coverage measure associates a toN.  |ofvariable i ::’O"(’j =
i assacia ith ez int i whi > - . f b =1
;rrf:glr::‘ef?mu:vl:ichctau:ra';ir:;lecd;Jsrede?::;ld‘zzsas:‘lp};:?sc ha‘ps;:lhm[h: effectively partitions the input domain D into a set of classes value with a set of tests for a given pro- i1 o
valuc is used. Several relaed path. crieria, whieh differ in the D= UDUI such that for every x¢D, xeDG) W ane omy gram. This value indicates the complete- while (i<=n)
i 2 2 executing the program with input x causes path p; 3 L \
number :{e {hese pssociations needed (o adequately fest the 1o a test T=lriun.), where £,€D{] would seem 10 be a ness of the set of tests for that program. sum 4o ja— Uses of variable i
program, pared. reasonably rigorous test of the program. However, this bs]m) does We define the following dataflow cover- =ity
not guarantee program correctness. 1f one of the D] is not : :
revealing [2], that is for some x;€D(l the program works age measures for C‘p;OgrAaljn‘S based on A basic bi -k/ ++;
Yitfadiction correctly, but for some other x,€D[] the program is incorrect, Rapps and Weyuker’s’ definitions: block, i Basiebloc ?f(k =0
uctio; then if x; is selected as 1 the error will not be discovered. In decision, c-use, p-use, all-uses, ;;nﬂ(” = %%d. sum = %sd\’. 1
Program testing is the most commonly used method for  figure | we see an example of this. path, and du-path. PRt . sum);
demonstrating that a program actually accomplishes its intended 5 o & i
purpose. The testing procedure consists of selecting elements from Precisely defining these con Pathe X printf(’n = %ed. prod = °edin”. n.prod). -
the program’s input domain, executing the program on these test cepts for the C language requires \
cases, and comparing the actual output with the expected output some care, but the basic ideas Du-paths A decision predicate

(in this discussion, we assume the existence of an "oracle", that is,
some method to correctly determine the expected output). While
exhaustive testing of all possible input values would provide the
most complete picture of a program’s performance, the size of the
input domain is usually too large for this to be feasible. Instead,
the usual procedure is to select a relatively small subset of the
input domain which is, in some sense, representative of the entire
input domain. An evaluation of the performance of the program

START

can be illustrated by the exam-
ple in Figure 1. We define the
measures to be intraprocedural,
so they apply equally well to in-
dividual procedures (functions),
sets of procedures, or whole pro-

All-uses

C-uses

Decisions

Basic blocks

P-uses
——

involving variable k

on this test data is then used to predict its performance in general. ATAC gram behavmrj presumably due to one
Ideally, the test data should be chosen so that executing the grams. coverage or more faults in the code.)
program on this set will uncover all errors, thus guaranteeing that measures Figure 2 suggests an ordering of the

any program which produces correct results for the test data will
produce correct results for any data in the input domain.
However, discovering such a perfect set of test data is a difficult, if
not impossible task [1,2]. In practice, test data is selected to give
the tester a feeling of confidence that most errors will be
discovered, without actually guaranteeing that the fested and
debugged program is correct. This feeling of confidence is
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Block. The simplest example

of a coverage measure is basic
block coverage. The body of a C
procedure may be considered as
a sequence of basic blocks. These
are portions of code that nor-

Figure 2. A hierarchy of control and
dataflow coverage measures.

coverage criteria. In this hierarchy. block
coverage is weaker than decision cover-
age, which in turn is dominated by p-use
coverage. C-use coverage dominates both
block and decision coverage but is inde-
pendent of p-use coverage; both c-use and




Data-flow coverage is the
tracking of def/use chains
executed at runtime
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1. Defining “data-flow coverage”

Def site: Variable allocation site (static and dynamic)
Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site
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1. Defining “data-flow coverage”

Def site: Variable allocation site (static and dynamic)
Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site

How to efficiently implement this?
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Requirements

2. Efficiently track data flows
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Problem: Tracking all
data flows is infeasible
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Solution: Track data
flows at varying
sensitivities
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2. Efficiently track data flows

Partition def sites by type ?
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2. Efficiently track data flows

Partition use sites by access

read

write

— =><{

read + offset write + oPPse,‘t
read + value write + value access + oPPse_‘t
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2. Efficiently track data flows

Partition use sites by access

/ e Aite
read + value write + value access + offset

~ 1 7

occess + value
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2. Efficiently track data flows

Compose def/use lattices to realize desired sensitivity

re_ad write

read + value write + value access + oPPse;t

\\// N1 7

oaccess + VO\lu
nts pointers  structs € 4

N4

all types
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Do efficient
implementations exist?
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Requirements

3. Data flows — fuzzer coverage
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3. Data flows — fuzzer coverage

Target source_
T arget ob )

Puzz«“oc So —ﬁ. .
AT
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3. Data flows — fuzzer coverage
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Def site instrumentation

1. ldentify allocation sites (static and dynamic) based on desired
sensitivity

2. Replace dynamic allocations with tagged allocation

3. “Heapify” static allocations (and tag)
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3. Data flows — fuzzer coverage
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Use site instrumentation

1.

2.
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|dentify based on desired sensitivity (read/write/access)

|dentified via runtime address
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3. Data flows — fuzzer coverage

fuzzalloe.so
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fuzzalloc.so

e Data-flow tracking is reduced to metadata management

e Def site IDs are the metadata to retrieve at use site
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fuzzalloc.so

e Data-flow tracking is reduced to metadata management

e Def site IDs are the metadata to retrieve at use site

Achieved via mid-fat pointers + custom memory allocator
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fuzzalloc.so

o = malloc(size);

—

b = malloc(0x100);

bl = ..,
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fuzzalloc.so

o = __tagged_wmalloc0x1234, size);

,K\\\\s
L .

b= ____‘tagged_malloc(()xabcd, 0x100);

——mem_accessib, i);

bl = ..;
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fuzzalloc.so

Instrumented target Puzzalloc-mo\nased memory spaces

Progrowm + libraries )
- Stack(__ )

o = —tagged_malloc0x1234, size);
0x123400000000(
(

S

— ) [

b= *_tagged_malloc(Oxabcd, 0x100); \
T 0xabed00000000(

NS A

——mem_accessh, i);

bLid = ..,
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fuzzalloc.so

Instrumented target Puzzalloc-managed memory spaces 5 —mem_occesslvoid *ptr, int oPPse‘t)E

Program + libraries(

Stack( : J)

}o\ = ,__‘taggeo(___mallot(()x‘ls‘(, size);

0x123400000000(
é
C
(

(L N, G

(e = __togged malloctOxabed, 0XI00), \
T 0xabed00000000(
: (

A A/

—mem_accesslb, 1); —

bl = ..,
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Requirements

4. Evaluate!
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4. Evaluate!

Targets

e Magma benchmark suite (%,)
e 59 JSON parser (/)

Fuzzers

e datAFLow (with different use site sensitivities)
e AFL++ (with/out cmplog)
e Angora
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4. Evaluate!

Bug-finding results

e datAFLow found less bugs than other fuzzers

e [ound two previously-undiscovered bugs
o In Lua interpreter
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4. Evaluate!

Code-coverage results

e AFL++ subsumed least-sensitive def/use coverage

e datAFLow performed slightly-better when more-sensitive
metric used
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4. Evaluate!

Evaluation plan

e Improve performance

e C(Characterizing target programs

e Quantifying data-flow coverage

o Fuzz!
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4. Evaluate!

Research Qs

e RQ1: Can we characterize target programs for control- vs. data-flow
coverage?

e RQ2: How can we quantify data-flow coverage?

e RQ3: Is def-use chain fuzzing effective?
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FIN

e Paper @
https://www.ndss-symposium.org/wp-conte

nt/uploads/fuzzing2022 23001 paper.pdf

e Code@
https://github.com/HexHive/datAFLow
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Registered Report: DATAFLow

Towards a Data-Flow-Guided Fuzzer

Adrian Herrera Mathias Payer Antony L. Hosking
ANU & DST ANU
drian. du.au th net i du.au
Abstract—Coverage guidod greybos fursers rely on foodback - program analyses 10 model program and iput strucure, and
derive from contrlyfow coverage o esplor a taget program  continuously gather dynamic information about th trget

target p
i mcovee bogs. Thle bs Gesps coutealfow 1ooThack ometng
only a mm-grmmd e pemonidivg Seneti Duta

have received comparatively little attention, appearing mainly
when heavyweight program analyses (e.g., taint analysis, symbolic
execution) are used. Unfortunately, these more accurate analyses
incur a high run-time penalty, impeding fuzzer throughput.
Lightweight data-flow alternatives to control-flow fuzzing remain
mmxplo

present DATAFLOW, a greybox fuzzer driven by
Inghlvmghl data-flow profling. Whereas control-flow edges rep-
of operations in a program, data-flow cdges
capture the dependencies between operations that produce data
values and the operations that consume them: indeed, there may
no_control dependence hetween thase operations. As such,
 coverage captures behaviors not visible as control flow
ively discy

the computational cost of exploration to be balanced
with precision.

We perform a preliminary evaluation of DATAFLOW, com-
paring fuzzers driven by control flow, taint analysis (both ap-
proximate and exact), and data flow. Our initial results suggest
that, so far, pure coverage remains the best coverage metric
for ncovering bmgs n st trges we fumed (2% of thnn).
However, data o coverage docs show promise n targets where
ottt o Y Srwaled e, Sy (R ks, Dyt
evaluation and analysis on a wider range of targets is required.

1. INTRODUCTION

Fuzzers are an indispensable tool in the software-testing
toolbox. The idea of fuzzing—to test a target program by
subjecting it to a large number of randomly-generated inputs—
can be traced back (o an assignment in a graduate Advanced
Operating Systems class [1]. These fuzzers were relatively
primitive (compared o a modern fuzzer): they simply fed a
randomly-generated input to the target, failing the test if the
target crashed or hung. They did not model program or input
structure, and could only observe the input/output behavior
of the target. In contrast, modem fuzzers use sophisticated

Iteatona Fuzaing Woratop (FUZZING) 2022
24 Apeil 2022, S Dicgo CA.

ISBN 1 891562 77 0

hitps.//dx.doiorg,10.14722 furzing 2022.23001
www.adss-symposium org

Leveraging dynamic information drives fuzzer efficiency.
Tor example, coverage-guided greybox fuzzers—perhaps the
most widely-used class of fuzzer—track code paths executed
by the target.! This allows the fuzzer to focus its mutations on
inputs reaching new code. Intuitively, a fuzzer cannot find bugs
in code never executed, so maximizing the amount of code
exceuted should maximize the number of bugs found. Code
coverage serves as an approximation of program behavior, and
expanding code coverage implies exploring program behaviors.

Coverage-guided greybox fuzzers are now pervasive. Their
success [2] can be attributed to one fuzzer in particular:
American Fuzzy Lop (AFL) [3]. AFL is a greybox fuzzer that
uses lightweight instrumentation to track edges covered in the
target's control-flow graph (CFG). A large body of research has
built on AFL [4-12]. While improvements have been made,
‘most fuzzers still default to edge coverage as an approximation
of program behavior. Is this the best we can do?

Tn some targets, control flow offers only a coarse-grained
approximation of program behavior. This includes  targets
whose control structure is decoupled from its semantics
(e.g. LR parsers generated by yacc) [13]. Such targets require
dataflow coverage [13-17]. Whereas control flow focuses on
the order of operations in a program (i.c., branch and loop
structures), data flow instead focuses on how variables (i.c.,
data) are defined and used [14]: indeed, there may be no
control dependence between variable definition and use sites
(see §I for details)

In fuzzing, data flow typically takes the form of dynamic
taint analysis (DTA). Here, the target’s input data is tainted
at its definition site and tracked as it is accessed and used at
runtime. Unfortunately, accurate DTA is difficult to achieve
to compute (c.g., prior work has found DTA
is expensive [18, 19] and its accuracy highly variable across
implementations [18, 20]). Moreover, several real-world pro-
grams fail to compile under DTA, increasing deployability
concerns. Thus, most widely-deployed greybox fuzzers (e..,
AFL [3], libFuzzer [21], and honggfuzz [22]) eschew DTA in
favor of higher fuzzing throughput

While lightweight alternatives to DTA exist (e.g.,
REDQUEEN [23], GREYONE [19]), the full potential of
control- vs. data-flow based fuzzer coverage metrics have not
yet been thoroughly explored. To support this exploration, we

Millr ot al's original fuzzer (1] is now known as a blackbox fuzzer,
because it has no knowledge of the targets intemls,

51
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