
Security and Privacy Group

Abhishek Arya
Google

The Evolution of Fuzzing in
Finding the Unknowns

Abhishek Arya
 OSST

Security and Privacy Group

 About me!
● Googler

● Principal Engineer/Manager, Google Open Source Security

Team (GOSST)

● TAC member, Open Source Security Foundation (OpenSSF)

● Founding Chrome Security member

Security and Privacy Group

 2009-2010: It works!
● Prototype fuzzing at scale on Google Borg

● First example of “corpus distillation”

● Media parsers are hard to get right

● Simple mutations (e.g. bitflipping)

Fuzzing on free cycles

https://security.googleblog.com/2011/08/fuzzing-at-scale.html

Security and Privacy Group

 2011-2012: Figure out the pipeline
● Continuous fuzzing using ClusterFuzz, as part of SDLC

○ Build management

○ Task management

○ Test management

○ Crash management

○ Regression analysis

○ Fix verification

https://blog.chromium.org/2012/04/fuzzing-for-security.html

Security and Privacy Group

 2012-2013: The rise of the Sanitizers
● Valgrind was impractical for efficient fuzzing

● Lack of instrumentation impacted reliability, usefulness

● Address, Memory, Thread, UndefinedBehavior Sanitizers

○ Fast (~1.5x slowdown),

reproducible, insightful results

● Testcase Deduplication V1

● Security Asserts enabled builds

Security and Privacy Group

 2014-2015: Smart coverage guided fuzzing
● American Fuzzy Lop (AFL)

○ Supports binary, source-code instrumentation

○ Out-of-process fuzzing (+later in-process)

● libFuzzer

○ Support source-code instrumentation only

○ In-process fuzzing

○ Developer focused, fuzzer unit-tests

○ Custom mutators for structure-aware fuzzing

https://lcamtuf.blogspot.com/2015/06/new-in-afl-persistent-mode.html

Security and Privacy Group

 2014-2015: Smart coverage guided fuzzing (cntd)

#include "libxml/parser.h"

extern "C" int LLVMFuzzerTestOneInput(
 const uint8_t * data, size_t size) {

 auto doc = xmlReadMemory(data, size,

"noname.xml",
 NULL, 0);
 if (doc) {
 xmlFreeDoc(doc);
 }

 return 0;
}

Security and Privacy Group

 2016-2017: Scaling with the community
● OSS-Fuzz service launched to fuzz open-source

● Regressions reported in a few hours

○ Automation+Ease of use=90% fix rate

● Community input drove key features

○ Code coverage reports

○ Custom mutators

○ Ideal integrations

https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html

Security and Privacy Group

 2016-2017: Scaling with the community (cntd)

To qualify for these rewards, a project
needs to have a large user base and/or
be critical to global IT infrastructure.
Eligible projects will receive $1,000 for
initial integration, and up to $20,000
for ideal integration (the final amount
is at our discretion). You have the
option of donating these rewards to
charity instead, and Google will double
the amount.

Internal FuzzIts External OSS-Fuzz Rewards

Security and Privacy Group

2018-2019: Open Sourced ClusterFuzz
● Testcase deduplication v2, high-quality automated filing

● Fuzz target performance analyzer

● Efficiency improvements

○ Corpus enhancements: cross-pollination, radamsa, etc

○ Distributed corpus sharing and pruning

● Cross-platform (Win, Linux, Mac, Android)

● First-class support for external fuzzers

https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html

Security and Privacy Group

 2020-2021: Real-world benchmarking
● FuzzBench service launched to compare fuzzer efficacy

● Why it worked well ?

○ Zero cost for large-scale experiments (4K cores)

○ Diverse, real world OSS-Fuzz benchmarks

○ Automated, easy to use workflows

○ Reproducible results

○ Support for private experiments

https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html

Security and Privacy Group

 2020-2021: Real-world benchmarking (cntd)
● Fuzzing engine improvements

○ libFuzzer, honggfuzz (interceptors, corpus size,

input scheduling, etc)

○ Developer testbed - AFL++

● Validation for fuzzing research

○ Entropic, SymQEMU,

StateAFL, WAFL, E9AFL,

AFL-HIER, BigMap, etc

https://aflplus.plus//papers/aflpp-woot2020.pdf
https://reviews.llvm.org/D73776
http://193.55.114.4/docs/ndss21_symqemu.pdf
https://arxiv.org/abs/2110.06253
https://dl.acm.org/doi/abs/10.1145/3503921.3503924
https://ieeexplore.ieee.org/abstract/document/9678913
https://www.ndss-symposium.org/ndss-paper/reinforcement-learning-based-hierarchical-seed-scheduling-for-greybox-fuzzing/
https://ieeexplore.ieee.org/abstract/document/9505052

Security and Privacy Group

 2022 and future: Predictions for the future
● Prioritized list of fuzzing chokepoints

● Coverage-guided property-based tests

● Non-memory corruption sanitizers

● Practical concolic execution

● Your ideas?

Security and Privacy Group

Questions?
● Reach out at

○ Email: aarya@google.com

○ Twitter: @infernosec

○ LinkedIn: linkedin.com/in/abhishek-arya-a565373/

○ OSS-Fuzz: oss-fuzz@google.com

○ FuzzBench: fuzzbench@google.com

○ OpenSSF fuzzing community meeting (monthly)

mailto:aarya@google.com
https://twitter.com/infernosec
https://www.linkedin.com/in/abhishek-arya-a565373/
mailto:oss-fuzz@google.com
mailto:oss-security@googlegroups.com
https://calendar.google.com/calendar/u/0?cid=czYzdm9lZmhwNWk5cGZsdGI1cTY3bmdwZXNAZ3JvdXAuY2FsZW5kYXIuZ29vZ2xlLmNvbQ

